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Are time and space infinitely smooth? 

  Einstein’s theory assumes spacetime is a classical manifold, 
infinitely divisible  

  This may be just an approximate behavior 

  Can we measure the minimum interval of time? 
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The smallest interval of time 

  Quantum gravity suggests a minimum (Planck) time, 

  ~ particle energy 1016 TeV 
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Two approaches to the Planck scale 
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Best microscopes vs best microphones 

CERN/Fermilab: TeV-1~10-18 m: particle interactions  

LIGO/GEO600: ~10-18 m,  coherent over 
~103 m baseline: Positions of massive 
bodies  
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         A new phenomenon?: holographic noise 

  The minimum interval of time may affect interferometers 

  Transverse uncertainty much larger than Planck scale in 
holographic theories 

  precise, zero-parameter prediction of “Holographic Noise”  

“Planck diffraction limit” at L 

is >> Planck length 
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 Spatial frequency limit causes transverse indeterminacy:   
            transverse position wavefunction at distance L 

AEI, May 2009 7 

€ 

L

€ 

λ
€ 

Lλ



Indeterminacy in difference of orthogonal transverse positions 
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         GEO-600 (Hannover): best displacement sensitivity 
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“Mystery Noise” in GEO600 

Prediction: CJH, arXiv:0806.0665 
(Phys Rev D.78.087501) 

Data: S. Hild (GEO600) 

Total noise: not fitted 

zero-parameter prediction for 
holographic noise in GEO600 
(equivalent GW strain) 
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Measurement of holographic noise 

  Holographic wave geometry predicts a new detectable effect: 
"holographic noise” 

  Not the same as zero-point field mode fluctuations 

  Spectrum and distinctive spatial character of the noise is predicted 
with no parameters 

  It may already be detected 

  An experimental program is motivated  

     CJH: arXiv:0806.0665  Phys Rev D.78.087501 (2008) 

    CJH: arXiv:0712.3419 Phys Rev D 77, 104031 (2008) 

    CJH and M. Jackson, Phys. Rev. D in press, arXiv:0812.1285 
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“This is what we found out about Nature’s 
book keeping system: the data can be written 
onto a surface, and the pen with which the 
data are written has a finite size.” 

-Gerard ‘t Hooft 

Everything about the 
3D world can be 
encoded on a 2D null 
surface at Planck 
resolution 
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Holographic Theories of Everything 



Holographic geometry: a phenomenological layer 
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Fundamental theory (Matrix, string, loop,…) 

Holographic geometry  (paraxial waves, diffraction, transverse 
spacetime wavefunction, holographic uncertainty…) 

Observables in classical apparatus (effective beamsplitter 
motion, holographic noise in interferometer signals) 



Holographic Quantum Geometry: theory  

• Black holes: entropy=area/4 

• Black hole evaporation  

• Einstein's equations from heat flow 

• Classical GR from surface theory 

• Universal covariant entropy bound 

• Exact state counts of extremal holes in large D 

• AdS/CFT type dualities: N-1 dimensional duals 

• Matrix theory 

• All suggest theory on 2+1 dimensional null surfaces 
with Planck frequency bound Beckenstein, Hawking, Bardeen et al., 

'tHooft, Susskind, Bousso, Srednicki, 
Jacobson, Padmanabhan, Banks, 
Fischler, Shenker, Unruh 
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Holography 1:  Black Hole Thermodynamics 

  Beckenstein, Bardeen et al. (~1972): laws of black hole 
thermodynamics 

  Area of (null) event horizon, like entropy, always increases 

  Entropy is  identified with 1/4 of event horizon area in Planck 
units (not volume) 

  Is there is  a deep reason connected with microscopic degrees 
of freedom of spacetime encoded on the surface? 
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Holography 2: Black Hole Evaporation 

  Hawking (1975): black holes radiate ~thermal radiation, lose 
energy  and disappear 

  evaporated quanta carry off degrees of freedom (~1 per 
particle) as area decreases 

  States on 2D event horizon completely account for information 
of evaporated states, assembly histories 

  Information of evaporated particles=entropy of hole= A/4   
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black hole evaporation can obey quantum mechanics if 
distant, nearly flat space has transverse indeterminacy 

If the quantum states of the evaporated particles allowed relative  
transverse position observables with arbitrary angular precision, at 
large distance they would contain more information than the hole 
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  ~ One particle evaporates per Planck area 
  position recorded on film at distance L    
  wavelength ~ hole size R 
  standard position uncertainty 

  Particle images on distant film:  must have fewer “pixels” than hole 
  Requires transverse uncertainty at distance L independent of  R 

 Uncertainty of flat spacetime  independent of black hole mass 
 Similarly for number of position states of an interferometer  

€ 

Δx > λL

Holographic uncertainty and black hole evaporation  
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Holography 3:  nearly-flat spacetime 

  Unruh (1976): Hawking radiation seen by accelerating observer 

  Appears with any event horizon, not just black holes: identify 
entropy of thermal radiation with missing information  

  Jacobson (1995): Einstein equation derived from 
thermodynamics (~ equation of state) 

  Classical GR from 2+1D null surface  (Padmanabhan 2007) 

Jacobson: points=2D surfaces 19 AEI, May 2009 



Holography 4: Covariant (Holographic) Entropy Bounds 

  't Hooft (1985): black holes are quantum systems 

  't Hooft, Susskind et al. (~1993): world is "holographic", 
encoded in 2+1D at the Planck scale 

  Black hole is highest entropy state (per volume) and sets 
bound on entropy of any system (includes quantum degrees of 
freedom of spacetime)  

  All physics within a 3D volume can be encoded on a 2D 
bounding surface ("holographic principle") 

  Bousso (2002): holographic principle generalized to "covariant 
entropy bound" based on causal diamonds:  entropy of  3D light 
sheets bounded by area of 2D bounding surface in Planck units 

  Suggests that  3+1D geometry emerges from a quantum theory 
in 2+1D:  light sheets 
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Holography 5: Exact dual theories in N-1 dimensions 

  Maldacena, Witten et al. (1997…):  AdS/CFT correspondence 

  N dimensional conformal field "boundary" theory exactly maps 
onto (is dual to) N+1 dimensional "bulk" theory with gravity and 
supersymmetric field theory 

  Is  nearly flat 3+1 spacetime described as a dual in 2+1? 
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Holography 6: string/M theory  

  Strominger, Vafa (1996):  count degrees of freedom of 
extremal higher-dimension black holes using duality 

  All degrees of freedom appear accounted for 

  Agrees with Hawking/Beckenstein thermodynamic count 

  Unitary quantum system 

  Strong indication of a minimum length ~ Planck length 

  What do the degrees of freedom look like in a realistic system? 

  Matrix theory: wavefunctions of transverse position Matrix 
Hamiltonian (CJH& M. Jackson) 
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Holographic geometry implements holographic entropy 
bound in emergent 3+1D spacetime  

 3+1D spacetime from 2+1D 
 built on light sheets: covariant formulation 
 fewer independent modes than field theory  
 independent pixels in 3D volume~ area of 2D null surface element 
 “bandwidth limit” of spacetime states 
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Theories with holographic noise 

Two conditions are sufficient: 

1.  Maximum Planck frequency in any frame 

2.  Planck wavelength resolution on light sheets 

AEI, May 2009 24 



AEI, May 2009 € 

1 € 

2

€ 

y

€ 

x
€ 

t

€ 

3

25 

1D  segment of length L on 
null wavefront 

Sweeps out 2D surface: 

independent position 
degrees of freedom 

Position variance in 2D 
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Example: Matrix theory 

  Banks, Fischler, Shenker, & Susskind 1997: a candidate theory 
of everything 

  Fundamental objects are 9 N x N  matrices, describing N “D0 
branes” (particles) 

  Dual relationship with string theory 

  Gives rise to 10 space dimensions, 1 compact, plus time 
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R=size of M 
dimension 

D0 branes= KK modes 

9 larger dimensions 
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3+1D spacetime 
emerges from 
2+1D: light 
sheet with z=t 
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 Only 2 of the 9 space dimensions survive to be macroscopic 
 The third space dimension is virtual, swept out by 2D null sheet 
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Holographic spacetime: wave theory from M theory 

  N D0 branes, N x N matrices Xi, , i= 1 to 9, compact M 
dimension with radius R ~ Planck length  

  Hamiltonian from Banks, Fischler, Shenker, & Susskind: 

  Notions of position, distance emerge on scales >>R 

  local in 2+1 D, “incompressible” on Planck scale: holographic 

  Center of mass position of macroscopic body, x= tr X 

  Macroscopic longitudinal position encoded by first (kinetic) 
term,conjugate momenta to position matrices 

CJH & M. Jackson, arXiv:0812.1285 
AEI, May 2009 28 



Macroscopic wave equation from M theory 

  M Hamiltonian stripped to macroscopic essentials 

  substitute 
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):

trΠ̂2 → −h̄2∂2/∂x2, (9)

Ĥ → ih̄∂/∂z+, (10)

and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse
dimension then becomes:

∂2u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:

u(x, z+) =
∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k⊥ =
√

4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the
position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle
in each transverse direction. The conjugate variables in this case are x and k⊥. Their variances 〈∆x2〉 and 〈∆k⊥2〉
in a wavepacket obey uncertainty relations of the usual form,

〈∆x2〉〈∆k⊥2〉 ≥ 16π2, (14)

where the inequality is saturated in the case of gaussian distributions. Using Eq. (13) to convert to the longitudinal
wave scale, positions with longitudinal separation on scale ∆L+ ≡ (4π/λ)(2π/〈∆k⊥2〉) have a transverse variance

〈∆x2〉 > λ∆L+/2. (15)

Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of
reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.
Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the
mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured
signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory
view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,
holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse
to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
coordinate z in any lab frame:

∂2u

∂x2
− 4πi

λ

∂u

∂z
= 0. (16)
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Holographic Hypothesis: Paraxial Wave Equation

A specific way to formulate the holographic hypothesis is to posit that effective spacetime wavefunctions describing
macroscopic position states are solutions not of the 3D wave equation, but of the paraxial wave equation.

In the emergent 3D space, the 2D light sheet appears as a wavefront moving at the speed of light. The state is thus
naturally described as deviations from the wavefronts of a periodic plane wave. The frequency of the carrier is the
fundamental frequency in some given lab frame.

Start with the standard 3D wave equation for a field with a single fixed frequency. In three dimensions, the 3D
wave equation for any field component can be written as the modulation of a carrier wave,

(∇2 + k2)E(!x) = 0. (4)

Here E(!x) is a complex phasor representing the amplitude and phase at each point. We use Euclidean coordinates
!x = x, y, z to denote positions in an arbitrary lab rest frame. A sinusoidal time dependence is built in, E ∝ sin(ωt),
where ω = ck = 2πc/λ. In holographic geometry the carrier is at the Planck frequency.

To derive the paraxial wave equation, we express the field in the form

E(x, z) = u(x, z)e−ikz. (5)

The field u now describes deviations from a plane wave normal to the z axis. For simplicity, we consider one transverse
dimension x and one longitudinal dimension z; identical and independent equations apply to y, z. In laboratory optics
applications, z corresponds the direction of a beam, and x to the width of a beam. In our holographic application z
corresponds to position in a particular direction that defines the normal axis of a holographic frame, and x to position
in a transverse dimension. The wave equation for u becomes

∂2u/∂x2 + ∂2u/∂z2 − 2ik∂u/∂z = 0. (6)

The paraxial approximation is to assume that the second term is negligible compared with the others:

∂2u

∂x2
− 2ik

∂u

∂z
= 0. (7)

This equation is proposed as an effective wave equation governing transverse position states of spacetime on macro-
scopic scales.

It should be emphasized that this phenomenological description is not a fundamental theory. The carrier field is
not a dynamical physical field, but a calculational tool. It is constructed to represent the holographic behavior in
a lab frame; thus, the wavefunction represents the slowly varying parts of the spatial behavior relative to a Planck
frequency plane wave. A true carrier field would not be invariant under boosts to another frame, and neither is this; the
wavefunctions are frame-dependent. Similarly, the expansion in paraxial coordinates makes sense if the fundamental
theory is built on 2D light sheets, even if the actual wavefronts are not the same in a different lab frame. The theory
accurately describes the kind of macroscopic geometrical information that is likely to survive in the classical limit,
and therefore is motivated as a proposal for an effective theory.

Relation to Matrix theory

It will be noticed that Eq. (7) is mathematically identical to the one dimensional nonrelativistic Schrödinger wave
equation, with z replacing time and −k replacing m/h̄. The interpretation of this equation as a wave equation
for spacetime also appears to be a natural consequence in a particular macroscopic interpretation of Matrix theory
proposed in ref.[11]. In this interpretation the single transverse coordinate operator x̂ refers to the center of mass of a
collection of N D0 branes or particles, described as the trace of a fundamental N×N matrix, one of nine matrices out
of which emerge nine spatial dimensions: x̂ = trX̂. The emergent 3D system has a maximum frequency equal to the
inverse periodicity R of the compactified M dimension, the only scale in the system, assumed in this interpretation
to be of order the Planck scale in any lab frame of the emergent spacetime. Modes in the 9 spatial dimensions that
emerge from the matrices are not independent on scale R, where the theory is strongly coupled, which indicates that
it obeys the holographic bound[4, 11]

The kinematic terms of the Banks et al.[4] Matrix Hamiltonian for the X̂ matrix can be written

Ĥ =
R

2h̄
trΠ̂2, (8)
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):

trΠ̂2 → −h̄2∂2/∂x2, (9)

Ĥ → ih̄∂/∂z+, (10)

and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse
dimension then becomes:

∂2u

∂x2
+

4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:

u(x, z+) =
∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by

k⊥ =
√

4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the
position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle
in each transverse direction. The conjugate variables in this case are x and k⊥. Their variances 〈∆x2〉 and 〈∆k⊥2〉
in a wavepacket obey uncertainty relations of the usual form,

〈∆x2〉〈∆k⊥2〉 ≥ 16π2, (14)

where the inequality is saturated in the case of gaussian distributions. Using Eq. (13) to convert to the longitudinal
wave scale, positions with longitudinal separation on scale ∆L+ ≡ (4π/λ)(2π/〈∆k⊥2〉) have a transverse variance

〈∆x2〉 > λ∆L+/2. (15)

Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of
reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.
Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the
mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured
signal as many as possible of the internal degrees of freedom that could potentially add more noise. The matrix-theory
view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.

Paraxial Representation of Holographic Spacetime

Wave optics language translates straightforwardly into a hypothesis about the quantum states of an emergent,
holographic spacetime. The holographic geometry hypothesis is that macroscopic wavefunctions of position transverse
to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
coordinate z in any lab frame:

∂2u

∂x2
− 4πi

λ

∂u

∂z
= 0. (16)



Macroscopic wave equation from M theory 

becomes 

  Schrodinger equation, with z+ as time dimension 

  Quantum mechanics without Planck’s constant 
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):

trΠ̂2 → −h̄2∂2/∂x2, (9)

Ĥ → ih̄∂/∂z+, (10)

and set R → k−1 = λ/2π. As in ref. [11], we leave the minus sign in the squared momentum operator, or equivalently,
adopt the usual Schrödinger imaginary momentum, −ih̄∂/∂x. The wave equation for M theory in one transverse
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4πi

λ

∂u

∂z+
= 0. (11)

Solutions to Eq. (11) can be expressed as a sum of modes that combine longitudinal and transverse waves:
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∑

k⊥

Ak⊥ exp−i[k+z+ ± k⊥x]. (12)

where the wavenumbers of the modes in the two dimensions are related by
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4πk+/λ. (13)

For each mode there is a longitudinal and a transverse wave. For a wavepacket or superposition, describing the
position of bodies (the wavefunction for the center of mass of a collection of branes), there is an uncertainty principle
in each transverse direction. The conjugate variables in this case are x and k⊥. Their variances 〈∆x2〉 and 〈∆k⊥2〉
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wave scale, positions with longitudinal separation on scale ∆L+ ≡ (4π/λ)(2π/〈∆k⊥2〉) have a transverse variance
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Note that h̄ has not been assumed to be unity here: it has cancelled out, leaving λ as the only scale in the theory.
This is interpreted as a new kind of uncertainty. A system with a given macroscopic extent has an intrinsic transverse

indeterminacy. Since it is formulated here in terms of waves, it does not directly give the precise uncertainty for an
apparatus of a given configuration; some other approaches to computing that are suggested below. Still, this line of
reasoning connects an effective macroscopic holographic uncertainty to fundamental holographic light sheet theories.

Normally we think of degrees of freedom as almost all residing in independent modes at the microscopic scale.
Interferometers are of course exquisitely designed to ignore these and instead measure the envelope wavefunction, the
mean or center of mass position of a vast number of particles, on a macroscopic scale. They exclude from the measured
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view of this is that the signal directly encodes the trace of one of the (very large dimensional) fundamental matrices
corresponding to the center of mass of the whole body.
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to a light sheet obey the paraxial wave equation (Eq. 7), with a fundamental wavelength λ, in terms of the normal
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Holographic Hypothesis: Paraxial Wave Equation

A specific way to formulate the holographic hypothesis is to posit that effective spacetime wavefunctions describing
macroscopic position states are solutions not of the 3D wave equation, but of the paraxial wave equation.

In the emergent 3D space, the 2D light sheet appears as a wavefront moving at the speed of light. The state is thus
naturally described as deviations from the wavefronts of a periodic plane wave. The frequency of the carrier is the
fundamental frequency in some given lab frame.

Start with the standard 3D wave equation for a field with a single fixed frequency. In three dimensions, the 3D
wave equation for any field component can be written as the modulation of a carrier wave,

(∇2 + k2)E(!x) = 0. (4)

Here E(!x) is a complex phasor representing the amplitude and phase at each point. We use Euclidean coordinates
!x = x, y, z to denote positions in an arbitrary lab rest frame. A sinusoidal time dependence is built in, E ∝ sin(ωt),
where ω = ck = 2πc/λ. In holographic geometry the carrier is at the Planck frequency.

To derive the paraxial wave equation, we express the field in the form

E(x, z) = u(x, z)e−ikz. (5)

The field u now describes deviations from a plane wave normal to the z axis. For simplicity, we consider one transverse
dimension x and one longitudinal dimension z; identical and independent equations apply to y, z. In laboratory optics
applications, z corresponds the direction of a beam, and x to the width of a beam. In our holographic application z
corresponds to position in a particular direction that defines the normal axis of a holographic frame, and x to position
in a transverse dimension. The wave equation for u becomes

∂2u/∂x2 + ∂2u/∂z2 − 2ik∂u/∂z = 0. (6)

The paraxial approximation is to assume that the second term is negligible compared with the others:

∂2u

∂x2
− 2ik

∂u

∂z
= 0. (7)

This equation is proposed as an effective wave equation governing transverse position states of spacetime on macro-
scopic scales.

It should be emphasized that this phenomenological description is not a fundamental theory. The carrier field is
not a dynamical physical field, but a calculational tool. It is constructed to represent the holographic behavior in
a lab frame; thus, the wavefunction represents the slowly varying parts of the spatial behavior relative to a Planck
frequency plane wave. A true carrier field would not be invariant under boosts to another frame, and neither is this; the
wavefunctions are frame-dependent. Similarly, the expansion in paraxial coordinates makes sense if the fundamental
theory is built on 2D light sheets, even if the actual wavefronts are not the same in a different lab frame. The theory
accurately describes the kind of macroscopic geometrical information that is likely to survive in the classical limit,
and therefore is motivated as a proposal for an effective theory.

Relation to Matrix theory

It will be noticed that Eq. (7) is mathematically identical to the one dimensional nonrelativistic Schrödinger wave
equation, with z replacing time and −k replacing m/h̄. The interpretation of this equation as a wave equation
for spacetime also appears to be a natural consequence in a particular macroscopic interpretation of Matrix theory
proposed in ref.[11]. In this interpretation the single transverse coordinate operator x̂ refers to the center of mass of a
collection of N D0 branes or particles, described as the trace of a fundamental N×N matrix, one of nine matrices out
of which emerge nine spatial dimensions: x̂ = trX̂. The emergent 3D system has a maximum frequency equal to the
inverse periodicity R of the compactified M dimension, the only scale in the system, assumed in this interpretation
to be of order the Planck scale in any lab frame of the emergent spacetime. Modes in the 9 spatial dimensions that
emerge from the matrices are not independent on scale R, where the theory is strongly coupled, which indicates that
it obeys the holographic bound[4, 11]

The kinematic terms of the Banks et al.[4] Matrix Hamiltonian for the X̂ matrix can be written

Ĥ =
R

2h̄
trΠ̂2, (8)



Solutions of wave equation mix dimensions 

Solutions display diffusion, diffraction: 
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
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dimension then becomes:
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corresponding to the center of mass of the whole body.
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
operator identifications similar to those in the standard Schrödinger wave theory, with substitution of the light sheet
coordinate z+ ≡ (z + ct)/2 for t in the Hamiltonian operator (since for events on a null trajectory, z+ = ct = z):
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Nonlocal modes connect longitudinal and transverse positions 

  Wave solutions: “Holographic geometry” 

  Transverse gaussian beam solutions from wave optics 

  New macroscopic behavior, not the same as field theory limit 
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Wave Theory of Spacetime 

  Adapt wave optics to theory of 
“spacetime wavefunctions” 

  transverse indeterminacy from 
diffraction of Planck waves 

  Allows calculation of holographic 
noise  with no parameters 
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Paraxial wave equation 

  phasors in wavefronts: wavefunction relative to carrier 

   wave equation in each transverse dimension x 

  Basis of laser wave optics 

  Solutions display diffraction: e.g. laser cavities 

  reinterpret as a position wavefunction 
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where Π̂ denotes the conjugate to X̂. This leads to a Schrödinger wave equation resembling Eq. (7) if we make
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 Rayleigh  range and uncertainty of rays 

 Aperture D, wavelength λ : angular resolution λ/D 
 Size of diffraction spot at distance L: Lλ/D 
 path is determined imprecisely by waves 
 Minimum uncertainty at given L when 
  aperture size =spot size, or  

( ) D Lλ/D 

L 
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Indeterminacy of a Planckian path 

 Classical spacetime manifold defined by paths and events 
 path~ ray approximation of wave 
 Indeterminacy of geometry reflects limited information content 
of band-limited waves 

38 AEI, May 2009 



 holographic approach to the classical limit  

  Angles are indeterminate at the Planck scale, and become 
better defined at  larger separations: 

  But uncertainty in relative transverse position increases at 
larger separations: 

  Not the classical limit of field theory 

  Indeterminacy and nonlocality persist to macroscopic scales 
39 AEI, May 2009 



Holographic Noise in Interferometers 

  Nonlocality:  relative positions at  km scale 

  Fractional precision: angle < 10-21, > "halfway to Planck"  

  Transverse position measured in Michelson layout 

  Heavy proof masses, small Heisenberg uncertainty (SQL): 
positions measure spacetime wavefunction 

  holographic noise appears in signal 
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Measurement of holographic geometry requires  coherent  
transverse position measurement over macroscopic distance 

CERN/FNAL: TeV-1~10-18 m  

LIGO/GEO600: ~10-18 m 
over ~103 m baseline  

41 AEI, May 2009 



Signal phase~ difference of 
integrated distance along two 
orthogonal arms  

Beamsplitter 

Beamsplitter and signal in Michelson interferometer 

42 AEI, May 2009 



Signal: random phase difference 
of reflection events from 
indeterminate position difference 
of beamsplitter at the two events 

reflection 
events at two 
times 
separated by 
2L/c 

Holographic noise in the signal of a Michelson interferometer 
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Quantum uncertainty of transverse positions of beamsplitter 

  Position wavefunction 
widths of beamsplittter at 
reflection events given by 
Gaussian beamwidth 

  apparent arm length 
difference is a random 
variable, with variance 

 this is a new effect predicted with no parameters 
44 AEI, May 2009 

€ 

Lλ /π



Wavefunction and wavefronts 

AEI, May 2009 45 

In an optical cavity of any size, the 
holographic transverse uncertainty is 
smaller than the beam waist by a factor 

€ 

λP /λlaser



Interferometer with Planck radiation 

AEI, May 2009 46 

 Beamsplitter mass limited to Planck surface density 
 No “better measurement” is possible 



Power Spectral Density of Shear Noise 

At f=c/2L, shear fluctuations with power spectral density  

Uncertainty  in angle ~  dimensionless shear 

47 AEI, May 2009 



 Universal Holographic  Noise 

  flat power spectral density of shear perturbations: 

• general property of holographic quantum geometry 
• Prediction of spectrum with no parameters  
• Prediction of spatial shear character:  only detectable in 
nonlocal relative transverse position observables 
• Definitively falsifiable 
• Better estimate at low frequencies in interferometers: 

48 AEI, May 2009 

12

This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−12
√

tP /π = N−12.6× 10−22/
√

Hz, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.



Holographic noise does not carry energy or information 

 ~ classical gauge mode (flat space, no classical 
spacetime degrees of freedom excited) 
 ~sampling or pixelation noise, not thermal noise 
 Bandwidth limit of spacetime relationships 
 Necessary so the number of distinguishable position 
states does not exceed holographic bound on 
degrees of freedom 
 No curvature 
 no strain, just shear 
 no detectable effect in a purely radial measurement 
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Normal incidence optics: phase signal does not 
record the transverse position of a surface  

 But phase of beam-split signal is sensitive to transverse 
position of surface  

( ) 
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GEO-600 (Hannover) 
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Large power 
cycles through 
beamsplitter, 
adds transverse 
holographic 
noise  K.Strain 
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 Noise in GEO600 over time 

H. Lück, S. Hild, K. Danzmann, K. Strain 

K.Strain 
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S. Hild, GEO600, May 2008 54 AEI, May 2009 
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This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−1
√

4tP /π, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.



“Mystery Noise” in GEO600 

Prediction: CJH, arXiv:0806.0665 
(Phys Rev D.78.087501) 

Data: S. Hild (GEO600) 

Total noise: not fitted 

zero-parameter prediction for 
holographic noise in GEO600 
(equivalent GW strain) 

€ 

tPlanck /π
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Why doesn't LIGO detect holographic noise? 

  LIGO design is not as sensitive to transverse displacement 
noise as GEO600 

  relationship of holographic to gravitational wave depends on 
details of the system layout 

Transverse position 
measurement is not 
made  in FP cavities 
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LIGO noise (astro-ph/0608606) 

Measured LIGO noise spectrum (GW strain 
equivalent, rms power spectral density)   

(if shear=strain) 

 holographic noise 
spectrum (shear)   
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This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−12
√

tP /π = N−12.6× 10−22/
√

Hz, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.



holographic noise prediction for LIGO:  reduced by  
~arm cavity finesse 

about 100 times less 
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This power spectrum peaks near f ≈ c/2L and decreases at higher frequencies; in the high frequency limit it is
independent of L,

Φ(f) ≈ 4c2tP
(2π)3f2

lim
f→∞

∫ 4πfL/c

0
dxx cos(x) ∝ c2tP /f2, f >> c/2L. (30)

Apparent Gravitational Wave Spectrum

A model of an apparatus using the beamsplitter position correlation function (Eqs. 26, 27) as a description of
effective classical motion allows an exact prediction of the signal statistics at all frequencies. Current results are
generally quoted in terms of equivalent gravitational wave strain, which requires a consideration of the gravitational
wave transfer function of an apparatus.

In the low frequency limit (Eq. 29), the effective holographic beamsplitter displacement noise in a folded Michelson
interferometer creates the same noise spectrum as an amplitude spectral density of gravitational waves,

h(f) = N−1
√

Φ/L2 = N−12
√

tP /π = N−12.6× 10−22/
√

Hz, (31)

where N is the average number of photon round trips in the interferometer arms.
The reason for the added factor ofN−1 is that folded arms (as in GEO600), or Fabry-Perot cavities (as in LIGO) with

finesse ≈ πN , amplify the signal response to a gravitational wave strain, causing a phase displacement proportional
to N at frequencies below ≈ c/2LN . This effectively lengthens the arms for gravitational wave detection, but does
not amplify the holographic noise in the signal. The effect of the beamsplitter displacement noise on the signal just
depends on the actual size of the arms.

In GEO600, with N = 2, the estimate in Eq.(31) predicts a new noise source, h =
√

tP /π = 1.3× 10−22/
√

Hz, at
all measured frequencies. This holographic noise spectrum approximately agrees with currently unexplained “mystery
noise” in GEO600, above about 500Hz.

In ref. [6] a similar result was derived, by a calculation based on a wave-optics model similar to that presented
here. In that paper however it was erroneously claimed that in a power recycling cavity the predicted slope changes
at very low frequencies, below an inverse power-recycling time. In fact the apparent gravitational wave spectrum
corresponding to a bounded random walk of the beamsplitter is just flat as in Eq. (31). In addition, the numerical
factor in ref. [6] was different, h =

√
tP /2 instead of h =

√
tP /π, so the predicted noise is now less, by about 20%.

The current calculation takes into account the detailed profile of the gaussian mode solution, Eq. (21), which is likely
to be a more physically realistic model of instrument/spacetime wavefunction, and should be taken as a more reliable
calculation than the earlier one. Low frequency excess noise in GEO600 is still unexplained, but the holographic
prediction still approximately fits the unexplained noise above about 500 Hz. Indeed if it is real, holographic noise is
currently the dominant noise source in GEO600 at its most sensitive frequency— about half of the measured noise
power.

GEO600 is more sensitive than LIGO to beamsplitter displacement, even if it is less sensitive to gravitational waves.
The holographic noise predicted in LIGO is below current limits by a significant factor due to its Fabry-Perot arm
cavities, which have N ≈ 102. Without the factor of N— that is, if the noise lacked the specific transverse character of
holographic noise— current LIGO limits rule out excess noise with this amplitude. For this reason, LIGO data already
rule out more general “spacetime foam” type models[9]. Advanced LIGO may become holographic-noise-limited at
its most sensitive frequencies.

At frequencies above ≈ c/2L, the apparent noise spectrum in an unfolded system turns over to h(f) ∝ (c/fL)
√

tP .
For a folded system, the amplification of the effect of gravitational waves on the signal decreases above a frequency
≈ c/2LN , since there are fewer roundtrips per wave cycle. Thus the equivalent gravitational wave spectrum actually
rises from there up to a frequency ≈ c/2L, above which it is about the same as an unfolded system.

Cross Correlation of Beamsplitter Position

An experiment designed to provide convincing evidence for or against the holographic hypothesis could include more
than one Michelson interferometer. Two separate interferometers, with no physical connection aside from inhabiting
the same holographic spacetime, should nevertheless show correlated holographic noise. This feature can be used to
design an experiment with purely holographic signatures in the signal.



• Beamsplitter position indeterminacy inserts holographic 
noise into signal 

• system with GEO600 technology can detect 
holographic noise if it exists  

• Signatures: spectrum, spatial shear  

Interferometers can detect quantum  
indeterminacy of holographic geometry 

CJH:  Phys. Rev. D 77, 104031 (2008);  arXiv:0806.0665 
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Current experiments: summary 

  Most sensitive device, GEO600, sees noise compatible with 
holographic spacetime indeterminacy 

  requires testing and confirmation! 

  H. Lück:  "...it is way too early to claim we might have seen 
something.” 

  But GEO600 is operating at holographic noise limit 

  LIGO: current system not sensitive enough, awaits upgrade 

  Proof: new apparatus, coherence of adjacent systems 
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Dedicated holographic noise experiments:  
beyond GW detectors 

•  f ~100 to 1000 Hz with GW machines 

•  f ~ 3 MHz possible with new apparatus on ~40m scale 

• Easier suspension, isolation, optics, vacuum, smaller 
scale 

• Correlated holographic noise in adjacent paths: 
signature of holographic effect 
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Two ~40m Michelson 
interferometers in 
coincidence 

~1000 W cavity 

holographic noise= laser 
photon shot noise in ~5 
minutes (1 sigma) 

Conceptual Design from Rai Weiss 

Currently discussing: Fermilab (CJH, Chou, Wester, Steffen, 
Ramberg, Gustafson, Stoughton, Tomlin, Ruan, Bhat), MIT (Weiss, 
Waldman), Caltech (Whitcomb), UC (Meyer) 

63 AEI, May 2009 



Status of the Fermilab Holographic Interferometer 

  Team so far:  Fermilab (CJH, Chou, Wester, Steffen, 
Ramberg, Gustafson, Stoughton, Tomlin, Ruan, Bhat), 
MIT (Weiss, Waldman), Caltech (Whitcomb), UC (Meyer) 

  Building tabletop prototype 
  Planning around Weiss design 

  Sites on site available and  surveyed: ~40m arms possible 
(partially outdoors), seismically acceptable 

  Invited by Director Oddone to move forward 
  Internal R&D proposal in preparation, decision in ~June 

AEI, May 2009 64 



Candidate site on old neutrino beamline 
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Science of Holographic Noise 

  Measure fundamental  interval of time 

  Measure  all  physical degrees of freedom: explore physics 
“from above” 

  Study holographic relationship between space and time, 
emergence of spatial dimensions  

  Precisely compare noise spectrum with Planck time derived 
from Newton’s G:  test fundamental theory 

  Test predictions for spectrum and spatial correlations: 
properties of holographic geometry 
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Projects in phenomenology 

  Calculate spectrum via a different argument 

  Exact numerics of black hole/flat space system: normalization 
of value of effective lambda to black hole physics 

  Full quantum wave model of apparatus, spacetime, signal 

  Numerically evaluate  displacement spectrum at all f 

  Numerically evaluate signal spectrum from displacement 
correlation function for various devices 

  Develop theory of cross correlation for arbitrary interferometer 
offsets and orientations, numerical predictions 

AEI, May 2009 67 



Projects in Theory 

  Use Matrix theory interpretation to bridge to strings 

  Secure lambda normalization to black hole entropy 

  Generalize to curved spacetime backgrounds 

  What happens inside black holes 

  Relation to field theory 

  Effect on inflationary modes (scalar, vector, tensor) 

  Effect on quantum field modes (zero point energy) 

  Cosmological observables (CMB, DE) 

  Corrections to quantum processes 

  Effect for masses less than M_P (atom interferometers) 
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Holographic geometry: part of new dark energy physics? 

  Holographic blurring is ~0.1mm at the Hubble length 

  ~(0.1mm)^-4 is the dark energy density 

  “Nonlocality length” for dark energy is holographic 
displacement uncertainty, scaled to Hubble length 

  (literature on “holographic dark energy” centers on same 
numerology) 

  Does not “explain” dark energy! 
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Items to discuss at the Hannover workshop 

  What is the status of the GEO600 “mystery noise”? 

  What are the prospects for  GEO600 to test the holographic 
noise hypothesis? 

  Are the theoretical arguments strong enough to motivate a 
new, dedicated high-frequency experiment, independent of the 
results from GEO600? 

  What are the optimal design choices? (configuration, size, 
power,...) 

  Will there be two experiments? (Fermilab and Hannover?) 

  If so, what will be the similarities and differences between 
them? 

  What about LIGO? 
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